Table S1. Activity rates of enzymes involved in nutrient uptake in the roots of 'Mardi Gras' rhododendron grown hydroponically at optimal (pH 5.5) and high (pH 6.5) nutrient solution pH. | Nutrient solution
pH | Nitrate reductase
(nmol NO2 ⁻ g ⁻¹ h ⁻¹) | | Ferric chelate
reductase
(µmol Fe²+ g⁻¹ h⁻¹) | | Acid phosphatase
(µmol p-nitrophenol g ⁻¹
h ⁻¹) | | |------------------------------|---|--------|--|--------|--|--------| | | 28 DAT ¹ | 48 DAT | 16 DAT | 47 DAT | 22 DAT | 48 DAT | | 5.5 | 46.74 | 231.60 | 7.187 | 0.99 | 1.64 | 2.94 | | 6.5 | 30.89 | 57.06 | 5.354 | 0.80 | 1.60 | 2.13 | | <i>p</i> -value ² | 0.087 | 0.015 | 0.136 | 0.194 | 0.663 | 0.049 | ¹ DAT = days after the start of treatment. ² Data were analyzed through one-way analysis of variance. **Figure S1.** Root stress measurements in 'Mardi Gras' rhododendron grown in nutrient solution at pH 5.5 or pH 6.5. Electrolyte leakage (**A**) and catalase (CAT) activity (**D**) increased three weeks after transfer to high pH nutrient solution. Lipid peroxidation (**B**) and proline concentration (**C**) were not affected by nutrient solution pH. Asterisks indicate significant differences at α = 0.05, as determined by ANOVA. **Figure S2.** Data collection timeline in a hydroponic experiment where 'Mardi Gras' rhododendron was grown in nutrient solution at pH 5.5 or pH 6.5 for 49 days.